ALGEBRA RELAZIONALE Esercizi con RelaX

Un servizio online per esercitazioni in algebra relazionale

- RelaX
 - http://dbis-uibk.github.io/relax/calc.htm
- Verrà proposto un "homework" il cui svolgimento sarà necessario per partecipare alla prova parziale

RelaX

- Utilizza una sintassi molto simile a quella vista a lezione e sul libro
- L'editor aiuta nella scrittura degli operatori e dei nomi di relazione e di attributo (basta cliccare sul simbolo desiderato)
- Talvolta è utile scrivere direttamente allora attenzione a maiuscole e minuscole (è "case-sensitive")
- Le espressioni sono talvolta di lettura non semplice, perché tutto su una linea, senza "pedici":
 - scriviamo σ Stipendio>40 (Impiegati) invece di σ _{Stipendio>40} (Impiegati)
- Attenzione agli spazi (talvolta il parser si confonde) e spesso è utile qualche parentesi in più
- Una differenza nella "assegnazione"; serve una "ridenominazione" esplicita della relazione; invece di

Capi := Impiegati

dobbiamo scrivere

Capi = ρ Capi (Impiegati)

Rappresentazione grafica

- RelaX fornisce anche una rappresentazione grafica delle espressioni sotto forma di albero, molto espressiva
- Ogni operatore è un nodo, con uno o due nodi discendenti (a seconda che abbia uno o due operandi) e le foglie sono relazioni nella base di dati
- Nei lucidi seguenti sono mostrate le interrogazioni discusse in aula e per ciascuna è mostrata la formulazione mostrata in aula, quelle in RelaX (molto simile) e l'albero generato da RelaX

Dati

- Accedendo al servizio si possono specificare interrogazioni su una base di dati
 - fra quelle disponibili sul servizio, oppure
 - su una "caricata" dall'utente
- Per i primi esempi (in questa presentazione), la base di dati è stata predisposta e può essere caricata selezionando il bottone "Load a data-set" e inserendo nel campo "Load dataset stored in a gist" il link https://gist.github.com/PaoloA/b7a8eac38317e0d6a7f0b904a9a10bd3 oppure, più semplicemente richiamando RelaX con l'url: http://dbis-uibk.github.io/relax/calc.htm?data=gist:PaoloA/b7a8eac38317e0d6a7f0b904a9a10bd3
- Ulteriori basi di dati (data-set nella terminologia di RelaX) possono essere predisposti con una sintassi molto semplice e caricati si github (vedere l'help)

Esempi

Impiegati

<u>Matricola</u>	Nome	Età	Stipendio
7309	Rossi	34	45
5998	Bianchi	37	38
9553	Neri	42	35
5698	Bruni	43	42
4076	Mori	45	50
8123	Lupi	46	60

Supervisione

<u>Impiegato</u>	Capo
7309	5698
5998	5698
9553	4076
5698	4076
4076	8123

 Trovare matricola, nome, età e stipendio degli impiegati che guadagnano più di 40

SEL_{Stipendio>40}(Impiegati)


σ Stipendio>40 (Impiegati)

 Trovare matricola, nome ed età degli impiegati che guadagnano più di 40

PROJ_{Matricola, Nome, Età} (SEL_{Stipendio>40}(Impiegati))

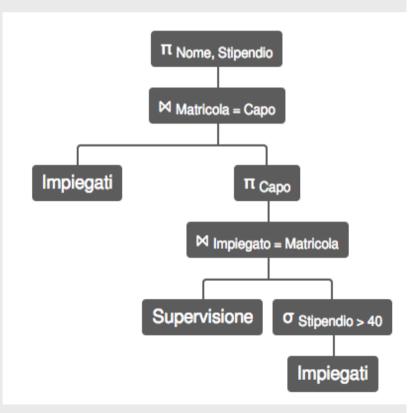
π Matricola, Nome, Eta (σ Stipendio>40 (Impiegati))


 Trovare le matricole dei capi degli impiegati che guadagnano più di 40

```
PROJ<sub>Capo</sub> (Supervisione

JOIN Impiegato=Matricola
(SEL<sub>Stipendio>40</sub>(Impiegati)))
```

```
π Capo ((Supervisione)

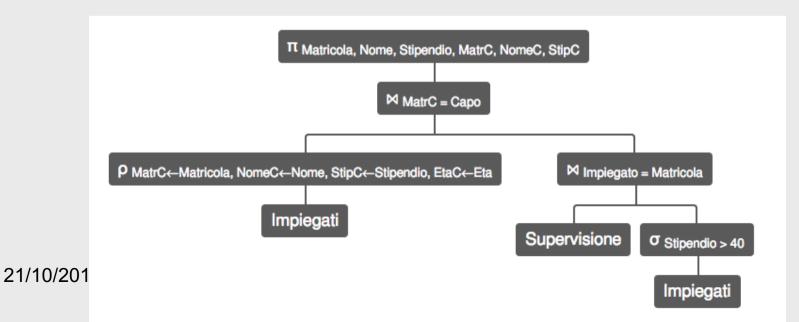

⋈ Impiegato=Matricola
(σ Stipendio>40 (Impiegati)))
```


 Trovare nome e stipendio dei capi degli impiegati che guadagnano più di 40

```
PROJ<sub>Nome,Stipendio</sub> (
Impiegati JOIN Matricola=Capo
PROJ<sub>Capo</sub> (Supervisione
JOIN Impiegato=Matricola
(SEL<sub>Stipendio>40</sub> (Impiegati))))
```

```
π Nome, Stipendio (
Impiegati ⋈ Matricola = Capo (π Capo ((Supervisione) 
⋈ Impiegato=Matricola (σ Stipendio>40 (Impiegati)))))
```


 Trovare matricola, nome e stipendio dei capi degli impiegati che guadagnano più di 40; per ciascuno, mostrare, matricola, nome e stipendio anche dell'impiegato


```
\begin{array}{c} \mathsf{PROJ}_{\mathsf{Matr},\mathsf{Nome},\mathsf{Stip},\mathsf{MatrC},\mathsf{NomeC},\mathsf{StipC}} \\ (\mathsf{REN}_{\mathsf{MatrC},\mathsf{NomeC},\mathsf{StipC},\mathsf{Et\grave{a}C}} \leftarrow \mathsf{Matr},\mathsf{Nome},\mathsf{Stip},\mathsf{Et\grave{a}}}(\mathsf{Impiegati}) \\ \mathsf{JOIN} \\ \mathsf{MatrC=Capo} \\ (\mathsf{Supervisione}\;\mathsf{JOIN}_{\mathsf{Impiegato=Matricola}}\;\mathsf{SEL}_{\mathsf{Stipendio}>40}(\mathsf{Impiegati}))) \end{array}
```

```
π Matricola, Nome, Stipendio, MatrC, NomeC, StipC

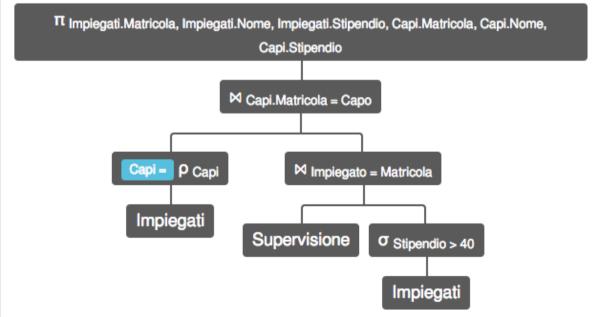
(ρ MatrC←Matricola, NomeC←Nome, StipC←Stipendio, EtaC←Eta (Impiegati)

⋈ MatrC = Capo

(((Supervisione) ⋈ Impiegato=Matricola (σ Stipendio>40 (Impiegati)))))
```


11

Una convenzione e notazione alternativa per i join

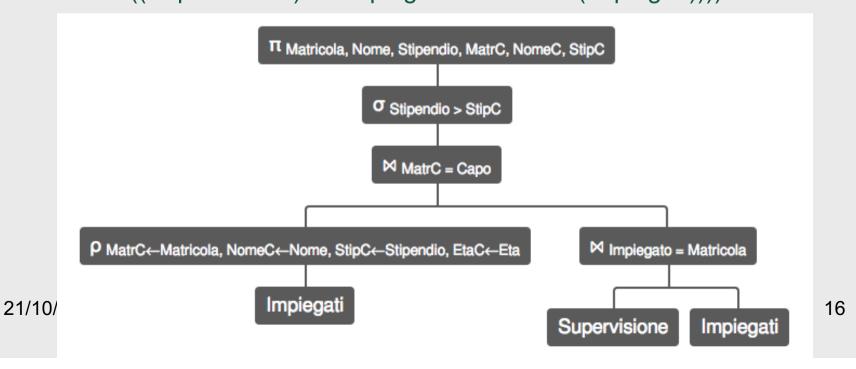

- Nota: è sostanzialmente l'approccio usato in SQL
- Ignoriamo il join naturale (cioè non consideriamo implicitamente condizioni su attributi con nomi uguali)
- Per "riconoscere" attributi con lo stesso nome gli premettiamo il nome della relazione
- Usiamo viste (o "assegnazioni") per ridenominare le relazioni
 - (ridenominiamo gli attributi solo quando serve per l'unione o per dare nomi significativi nel riusltato)

```
\begin{array}{c} \mathsf{PROJ}_{\mathsf{Matr},\mathsf{Nome},\mathsf{Stip},\mathsf{MatrC},\mathsf{NomeC},\mathsf{StipC}} \\ (\mathsf{REN}_{\mathsf{MatrC},\mathsf{NomeC},\mathsf{StipC},\mathsf{EtaC}} \leftarrow \mathsf{Matr},\mathsf{Nome},\mathsf{Stip},\mathsf{Eta}}(\mathsf{Impiegati}) \\ \mathsf{JOIN}_{\mathsf{MatrC=Capo}} \\ (\mathsf{Supervisione}\;\mathsf{JOIN}_{\mathsf{Impiegato=Matricola}}\;\mathsf{SEL}_{\mathsf{Stipendio}>40}(\mathsf{Impiegati}))) \end{array}
```

Capi := Imp

PROJ_{Imp.Matr, Imp.Nome, Imp.Stip,Capi.Matr,Capi.Nome, Capi.Stip}
(Capi JOIN _{Capi.Matr=Capo}
(Sup JOIN _{Imp=Imp.Matr} SEL_{Stipendio>40}(Imp)))

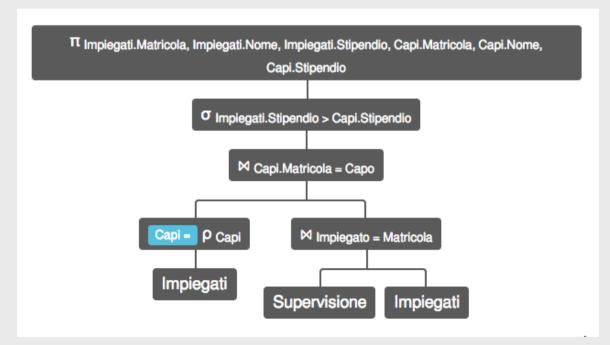
π Impiegati.Matricola, Impiegati.Nome, Impiegati.Stipendio, Capi.Matricola, Capi.Nome, Capi.Stipendio (Capi⋈ Capi.Matricola = Capo (((Supervisione) ⋈ Impiegato=Matricola (σ Stipendio>40 (Impiegati)))))



 Trovare gli impiegati che guadagnano più del proprio capo, mostrando matricola, nome e stipendio dell'impiegato e del capo

```
\begin{array}{c} \mathsf{PROJ}_{\mathsf{Matr},\mathsf{Nome},\mathsf{Stip},\mathsf{MatrC},\mathsf{NomeC},\mathsf{StipC}} \\ (\mathsf{SEL}_{\mathsf{Stipendio}} > \mathsf{StipC}(\\ \mathsf{REN}_{\mathsf{MatrC},\mathsf{NomeC},\mathsf{StipC},\mathsf{EtàC}} \leftarrow \mathsf{Matr},\mathsf{Nome},\mathsf{Stip},\mathsf{Età}(\mathsf{Impiegati}) \\ \mathsf{JOIN}_{\mathsf{MatrC}=\mathsf{Capo}} \\ (\mathsf{Supervisione}\;\mathsf{JOIN}_{\mathsf{Impiegato}=\mathsf{Matricola}}\;\mathsf{Impiegati}))) \end{array}
```

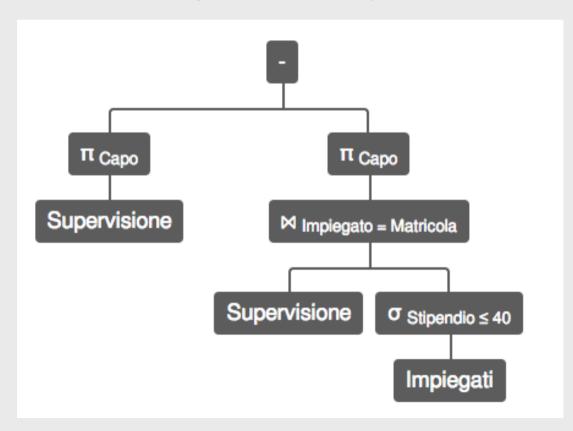
π Matricola, Nome, Stipendio, MatrC, NomeC, StipC
(σ Stipendio>StipC
(ρ MatrC←Matricola, NomeC←Nome, StipC←Stipendio, EtaC←Eta (Impiegati)


⋈ MatrC = Capo
((Supervisione) ⋈ Impiegato=Matricola (Impiegati))))

PROJ_{Imp.Matr, Imp.Nome, Imp.Stip,Capi.Matr,Capi.Nome, Capi.Stip} (SEL_{Imp.Stip}>Capi.Stip(Capi JOIN Capi.Matr=Capo</sub> (Sup JOIN Imp=Imp.Matr Imp)))

Capi = ρ Capi (Impiegati)

π Impiegati.Matricola, Impiegati.Nome, Impiegati.Stipendio,
Capi.Matricola, Capi.Nome, Capi.Stipendio
(σ Impiegati.Stipendio>Capi.Stipendio
(Capi⋈ Capi.Matricola = Capo ((Supervisione) ⋈ Impiegato=Matricola (Impiegati))))



21/10/2017

 Trovare le matricole dei capi i cui impiegati guadagnano tutti più di 40

 $\mathsf{PROJ}_\mathsf{Capo}\left(\mathsf{Supervisione}\right)\text{-}$ $\mathsf{PROJ}_\mathsf{Capo}\left(\mathsf{Supervisione}\;\mathsf{JOIN}\;_{\mathsf{Impiegato=Matricola}}\;\left(\mathsf{SEL}_{\mathsf{Stipendio}}\,_{\leq\,40}(\mathsf{Impiegati})\right)\right)$

π Capo (Supervisione) – π Capo (Supervisione ⋈ Impiegato=Matricola (σ Stipendio ≤ 40 (Impiegati)))

